Sioux Falls Zoologists

"Persistence and determination alone are omnipotent!"

The mirror test is an experiment developed in 1970 by psychologist Gordon Gallup Jr. to determine whether an animal possesses the ability to recognize itself in a mirror. It is the primary indicator of self-awareness in non-human animals and marks entrance to the mirror stage by human children in developmental psychology. Animals that pass mirror test are: Humans older than 18 mo, Chimpanzees, Bonobos, Orangutans, Gorillas, Bottlenose Dolphins, Orcas (Killer Whales), Elephants, and European Magpies. Others showing signs of self-awareness are Pigs, some Gibbons, Rhesus Macaques, Capuchin Monkeys, some Corvids (Crows & Ravens) and Pigeons w/training. (Sorry Kitty!)

Sioux Falls Zoologists endorse Bees: Tales from the Hive for showing
us the complex lives of these amazing little creatures.
How the bee colony works and bees work together.

Bees
Tales from the Hive

Bees: Tales from the Hive (2007) - 54 minutes
Bees: Tales from the Hive at Amazon.com

Amazingly up-close footage filmed with specially developed micro lenses brings you the most intimate--and most spectacular--portrayal of a working bee colony ever filmed. It's not frightening--it's fascinating. See things you never imagined. Hear things only bees hear. Discover new-found facts about the strange and complex life of bees.

Have you ever seen the high-speed mid-air "wedding flight" of a drone and his queen? Do you know how a bee colony defends itself from honey-loving bears? Did you know it takes nectar from 10 million flowers to create a single liter of honey? No wonder they're called worker bees! Bees: Tales from the Hive exposes a bee colony's secret world--detailing such rarely-seen events as the life-or-death battle between a pair of rival queens, a bee eater's attack on the hive, and a scout bee's mysterious dance that shares special "nectar directions" with the rest of the hive.

8-22-19 Huge beehive discovered inside ceiling
A giant hive was removed from a woman's house in Brisbane, Australia. The ten-month-old hive weighed 50kg and was holding 60,000 bees.

8-21-19 We could use bees' honey to track environmental lead pollution
Bees’ honey is a surprisingly effective tool for monitoring lead in the environment and could be used to track pollution in areas where more established methods of sampling are hard to organise. We know that bees carry tiny amounts of pollutants, including lead, to their hives after touching plants, flowers and simply flying through the air. So Kate Smith at the University of British Columbia in Vancouver, Canada, and her colleagues analysed honey samples from dozens of Western honeybee (Apis mellifera) hives to see what was in them. They found that the ratio of two types of lead atoms, lead-206 and lead-208, varied in the samples depending on where the hives were. Honey that came from land that is used heavily by humans had a different signature to honey that came from rural areas. This is probably because the lead comes from different sources, perhaps the burning of fuel in urban areas and from geological sources in the countryside. Rocks naturally give off tiny amounts of lead over time. The levels of lead found in the honey were well below recommended limits, meaning it is safe to eat, says Smith. At the Goldschmidt geochemistry conference in Barcelona, this week Smith reported that honey can provide estimates of environmental lead concentrations that are similar in accuracy to those obtained by more established sampling methods, such as looking at topsoil and particles in the air. She also measured bee tissue and found it matched too. “The gradient matches beautifully,” she says. This means honey could be a useful tool in places that don’t have established infrastructure for pollution monitoring, says Smith. The use of bees for monitoring environmental contamination is potentially better than existing methods, says Mark Taylor at Macquarie University in Australia who undertook similar research on honey in a mining town.

8-14-19 How killer bees evolved into chiller bees in just one decade
While killer bees terrorised the US, in Puerto Rico, an extraordinary accident of evolution has transformed them into a beacon of hope against the threat of insectogeddon. STEPPING out of his house to survey the destruction, Hermes Conde felt like he had been transported to another world. “It was as if an atomic bomb had hit. Nothing was standing,” he says. “I couldn’t recognise the landscape around my own home.” It was 21 September 2017 and Hurricane Maria had just torn Puerto Rico to shreds. An estimated 2975 people died in the worst natural disaster the Caribbean island has ever witnessed. From the early hours of 20 September through to mid-afternoon the next day, Maria bisected Puerto Rico like a 100-kilometre-wide buzz saw. It plucked up trees and hurled roofs from homes like Frisbees. The pounding rain sent flash floods, metres deep, rushing into populated areas. Downed trees and power lines blocked the roads. Electricity and water supplies were cut off for months after the storm. Conde’s first priority was to get petrol for his generator. It would take him 23 hours on foot, but fuel wasn’t the only thing he was looking for. Conde is a beekeeper and along the way he tapped into a network of fellow apiarists trying to discover the fate of their insects. The situation looked bleak. Hurricane Maria had almost annihilated Puerto Rico’s bees, but Conde was determined to rescue the survivors. It may sound like a strange mission in the middle of such chaos, but these are no ordinary bees. They are among the most incredible insects in modern evolutionary history. In just a decade, they have mysteriously transformed from killers to docile honey makers. They may even hold secrets that will help us breed disease-resistant bees in the future.

8-3-19 Bees' very hairy tongues help them mop up different types of nectar
Bumblebees can sup on thick nectar just as easily as they slurp up thin nectar – and now we know why. It’s all down to the tiny hairs on their tongues. Evolution has created some strange and surprising tools to help animals drink liquid. A close look at a bee’s tongue reveals a long rod-like stalk that is covered in thin hair-like protrusions. This makes it look a little like a tiny mop. When bees are feeding, they quickly dip their tongue in and out of a flower to collect the sweet nectar. Pascal Damman at the University of Mons, Belgium, and his colleagues analysed videos of bees (Bombus terrestris audax) feeding from nectar with different viscosities, and made an unexpected discovery. They found that regardless of the thickness of the fluid, the bees lapped it up at the same rate, collecting the same volume of liquid each time. That’s a surprise because in theory, thicker liquids should be more likely than thin liquids to stick to an object dipped into the solution. So Damman and his colleagues decided to try to mimic the action of bees’ tongues by 3D printing rods that were either smooth or covered in tiny structures to mimic the bees’ hair-like protrusions. They then dipped them into fluids of different viscosities. It turned out that the distance between the microstructures on the rods explained the puzzle. If they are spaced close enough to one another then liquid is automatically pulled between them by what is called capillary action. This capillary action is fast enough to fill all of the gaps with nectar each time the bee dips its tongue in, and holds the liquid without dripping. Like a mop and bucket, the bee squeezes the nectar out of its tongue hair when the tongue returns to the mouth. Patrick Spicer of the University of New South Wales, Australia, who wasn’t involved in the study, says we often look at fluids in terms of their large-scale behaviour because humans are large animals. From this perspective, liquids that flow slowly appear thick.

5-30-19 Wild bees' nest made entirely out of plastic discovered in Argentina
Plastic waste is just about everywhere on the planet at this point, and some animals have been found to adapt to our litterbug ways. In Argentina, scientists have made the first report of a bee’s nest made only out of plastic pieces. At the end of 2017 and beginning of 2018, Mariana Allasino of the National Agricultural Technology Institute in Argentina, and her team were studying chicory pollinators in San Juan. At the edges of the crops, they put out 63 trap nests made of wood with holes where bees can use material to build brood cells. These are similar in shape to the tubes in honeycomb and hold larvae while they develop. The team checked the trap nests monthly, finding only three nests. Two had brood cells made of petals and mud and were created by a species called Megachile jenseni. They confirmed this when five adults of the species emerged from the cells. The other nest was made entirely of two types of plastic – thin, blue strips the consistency of disposable shopping bags, and white pieces that were a bit thicker. In this nest, one brood cell had dead larva in it, one was empty and may have contained an unidentified adult that emerged, and one cell was unfinished. “I find it rather sad, but interesting. It begs for a choice test in an enclosure to determine why this plastic might be more appealing or adaptive than use of natural materials,” says Theresa Pitts-Singer at the US Department of Agriculture. She says it will be important to determine whether plastic lining in brood cells can be harmful to the bees, as more trapped moisture may lead to higher pathogen levels, and plastic may be toxic in some way as it breaks down.

5-2-19 Older bees pass on immunity-boosting molecules to other bees in jelly
Bee colonies are even more of a superorganism than we thought. When disease strikes, bees can add immunity-providing molecules to the jellies they feed to larvae, to give the hive a kind of collective immune system. A decade ago, Eyal Maori at Cambridge University and colleagues tested a new way of treating diseases in bees. The treatment was based on a technique RNA interference, which involves feeding the bees double-stranded RNA molecules that shut down specific genes. Many insects naturally produce these double-stranded RNA molecules as an immune response to infections by viruses, bacteria or fungi. The treatment worked, but strangely kept on working for months, even after the bees fed the RNAs were dead, suggesting the protection was somehow being passed on to young bees. Now investigating this further, Maori and his team found that bees pass RNAs on to other bees by adding them to the worker and royal jellies that they secrete to feed larvae. What’s more, bees produce special proteins that bind to RNAs to protect the molecules and prevent them from breaking down. This is the first time that individuals of the same species have been shown to exchange RNA in this way, says Maori. When the team sequenced the natural RNAs in the jellies, they found RNAs corresponding to ten viruses, suggesting that bees start making and sharing disease-targeting RNAs when infections strike. Bees may use RNAs for more than defence. The team suspect that they are the key ingredient in the royal jelly that makes larvae turn into queens rather than workers. Bees may also use RNAs to prepare future generations for the specific environment they will face. “This could be a form of social epigenetics,” Maori says.

4-26-19 The birds and the bees
The birds and the bees, after Pornhub.com introduced a new “Beesexual” channel, featuring explicit footage of bees pollinating flowers. The site will make donations to a bee-conservation charity to help “ensure that bees continue to fornicate and pollinate.”

4-20-19 Bees living on Notre-Dame cathedral roof survive blaze
Notre-Dame's smallest residents have survived the devastating fire which destroyed most of the cathedral's roof and toppled its famous spire. Some 200,000 bees living in hives on the roof were initially thought to have perished in the blaze. However Nicolas Géant, the cathedral's beekeeper, has confirmed that the bees are alive and buzzing. Mr Géant has looked after the cathedral's three beehives since 2013, when they were installed. That was part of an initiative to boost bee numbers across Paris. The hives sit on top of the sacristy by Notre-Dame's south side, around 30m (98 ft) below the main roof. As a result, Mr Géant says they remained untouched by the flames.European bees - unlike other species - stay by their hive after sensing danger, gorging on honey and working to protect their queen. High temperatures would have posed the biggest risk, but Mr Géant explained that any smoke would have simply intoxicated them. "Instead of killing them, the carbon dioxide makes them drunk, puts them to sleep," he told AP. Beekeepers commonly use smoke to sedate the insects and gain access to their hive.

3-11-19 The first male bees spotted babysitting are mostly stepdads
The behavior may have evolved from males lurking to mate. Scientists have discovered the first case of male bees babysitting, and it turns out that these males often aren’t biological bee dads but hopeful stepdads of the youngsters. Females of a small bluish-black Mediterranean bee (Ceratina nigrolabiata) dig out the pith of plant stems to make a nest, where a mom lays her eggs. Unlike honeybees, these are solitary bees with no colony of daughter-workers. Without that help, the mom herself must collect nectar and pollen to feed the young. But these are no latchkey larvae. In 78 nests that researchers watched for 90 minutes, an adult male bee stayed in the nest’s entrance, rump outward, while the mom was out foraging. A male rear blocked a menacing ant that researchers put at the entrance in 41 attempted attacks. And in more than half of these attempted invasions, males pushed the ant out of the nest, says behavioral ecologist Michael Mikát of Charles University in Prague. When mom buzzes back with food, she scratches against the male’s rump, and he moves to allow her into the nest. Then he goes back to being a dad door, or rather, a stepdad door. In 265 nests sampled, only 29 percent of the babysitting males had fathered even one offspring that they were guarding, Mikát and colleagues report the week of March 11 in the Proceedings of the National Academy of Sciences.

2-20-19 Bees prefer to turn right and it helps them decide where to live
Derek Zoolander isn’t the only one who prefers to turn in one direction. Honeybees have a strong tendency to turn right when they enter an open cavity. This bias may help them make a collective decision about where to build new nests. Directional biases exist in many animals, but they may be particularly important in social species for promoting cohesion within the group. To see if honeybees have such a bias, Thomas O’Shea-Wheller of Louisiana State University allowed 30 bees to explore two boxes. One was open inside and the other contained a branching maze of narrow tunnels. Out of 180 trials in the open cavity, the bees immediately turned right on 86 occasions but turned left just 35 times. On the remaining 59 occasions they flew straight ahead. What’s more, when they turned right in the experiment, they did so more quickly than when they turned left, suggesting it’s a more automatic response. However, in the branching maze they showed no preference for right or left. Bees explore spaces such as rock cavities and hollow trees when they are looking for a new nest site. They choose a site once a certain number of scouts are in the same place. Having a consistent behavioural pattern might be important in this situation for helping the group come to a decision, says O’Shea-Wheller. “By entering in the same fashion and turning the same way, they are more likely to meet each other and get a better idea of the popularity of the site.” It might also promote social cohesion in bees’ day-to-day life, when foragers return to the colony with food and water. Honeybees have more smell receptors on their right antennae than their left antennae, so the right-side preference also makes sense from a physiological perspective. Previous research has found that ants also have a directional bias when they enter a cavity – although they prefer to turn left.

2-6-19 Bees can pass a simple maths test but they might just be cheating
A big brain may not be necessary to do maths. Honeybees have passed a test of arithmetic that may require them to add and subtract, although others have questioned if that is really the case. In the test, bees were first shown a picture containing between one and five shapes. Then they were given a choice of two chambers, each with another picture by the entrance. One chamber contained a drop of sugar solution as a reward; the other contained bad-tasting quinine solution. If the shapes in the first picture were blue, the bees had to add one to the number of shapes to choose the correct chamber. If the shapes were yellow, they had to subtract one. Fourteen bees each went through the exercise 100 times during the training phase. In subsequent tests, bees chose the correct answer 67.5 per cent of the time – significantly better than chance. The correct answers in the tests were numbers that were not rewarded during training, so the bees could not get it right by simply associating a number with a reward. Sometimes the incorrect answer was in the same numerical direction as the right answer, so the test was more complicated than understanding whether the answer is bigger or smaller than the first number. This is a hard task for bees, says Adrian Dyer of RMIT University, Australia. It requires them to memorise the colour rule and apply it to the number of shapes in working memory. Clint Perry at Queen Mary University of London, UK, thinks the idea that bees are doing arithmetic doesn’t add up. If the bees simply choose the picture most similar to the picture they saw first, they could get 70 per cent correct.

1-14-19 Rich people’s gardens are better for bees and other pollinators
Pollinating insects, such as bees, seem to prefer richer areas. This may be because gardens in wealthier areas typically have a wider range of flowers. A team surveyed the distribution of plants and pollinating insects in four cities in the UK: Bristol, Edinburgh, Leeds and Reading. They found that residential, allotments and community gardens supported a greater abundance of pollinators than other types of urban land, such as parks and road verges. “This is consistent with the so-called ‘luxury effect’ whereby socioeconomic status is often positively correlated with urban biodiversity,” wrote the team in their paper. “In our case, the effect is driven by the greater quality of floral resources for pollinators in wealthier neighbourhoods.” Up to 50 times more bees were found in gardens than in areas with man-made surfaces including car parks and industrial estates. The authors recommend increasing the number of flowers in parks and other public green spaces and providing more allotments in towns and cities to increase the number of pollinating insects. “By understanding the impact of each urban land use on pollinators, whether it’s gardens, allotments, road verges or parks, we can make cities better places for pollinators,” says Jane Memmott at the University of Bristol, who runs the Urban Pollinators Project.

1-8-19 Flowers hear bees and make sweeter nectar when they’re buzzing nearby
Evening primrose flowers can hear approaching bees and quickly make their nectar sweeter in response to the sound. Lilach Hadany and colleagues at Tel-Aviv University, Israel, collected nectar from flowers before and after exposing them to a range of sounds, including recordings of bees and synthetic noises. Within three minutes of exposure to bee sounds or artificial sounds of a similar frequency, the flowers increased the concentration of sugar in their nectar by 20 per cent on average. There was no change in sugar levels in flowers played no sound, or higher-frequency sounds. Bees are highly sensitive to differences in sugar concentration, preferring to go after higher calorie nectar. By improving the rewards on offer, plants may benefit by encouraging the pollinators to spend longer visiting the plant, or to visit more flowers of the same species. Enhancing sugar levels when pollinators approach might help a plant save energy in the long run, and reduce the risk of nectar being degraded by microbes or stolen by ants. “Nectar can be a significant energy investment, and thus keeping a constantly high level of sugar can be wasteful,” says Hadany. How plants detect the sound of bees is unknown. However, using highly sensitive laser instruments, the researchers found that the evening primrose flowers vibrate when played recordings of bee or moth sounds. Hadany thinks that flowers may receive sound pressure in a similar way to ears. When petals were removed from flowers, they vibrated less when played the sound clips, suggesting petals may help receive or amplify pollinator sounds.

12-4-18 Rebel honeybee workers lay eggs when their queen is away
The rebel workers are also more likely to infiltrate other colonies to have offspring. Even honeybee queens have rebellious kids. In a colony of European honeybees (Apis mellifera), only the queen lays eggs that hatch into female workers who maintain the hive and nurse the young. But at times a colony experiences periods of queenlessness, when the old queen has left and a new one isn’t ready. Some of the queen’s left-behind worker daughters seize this chance to lay their own eggs — and sometimes in an entirely new colony, finds a study published online October 31 in Ecology and Evolution. The workers’ opportunistic egg-laying behavior was discovered in 2012 by researchers led by evolutionary biologist Karolina Kuszewska of Jagiellonian University in Kraków, Poland. With no queen around to release chemicals that stunt workers’ ovarian growth, these “rebel workers” can lay eggs. Since rebel workers still do not mate as a queen bee would, they produce only sons that live only to mate. A departed queen’s replacement comes from a group of daughters born to fight one another until one survivor becomes the new queen. Rebel workers are also more adventurous than normal worker bees, the new study shows. When the researchers tracked bees that were raised without queens, 21 to 39 percent of rebel workers flew to one of dozens of other colonies, compared with 3 to 8 percent of normal workers. No surprise: Those rebel workers were also more likely to infiltrate colonies that had no queen.

11-28-18 The Honey Factory review – the buzz of exploring honeybees’ secrets
A real insider book explains why the saying busy as a bee has honeybees all wrong – and how studying them in the wild could be good news for them and us. IF IT wasn’t for the honey and the fragrant, versatile wax, we would probably have steered well clear of bees. Early humans are thought to have discovered the delights of wild honey some 2 million years ago, with bee domestication dating to 9000 years ago in what is now Turkey and North Africa. Initially, the result was a lot of stings and destroyed nests. But the keeping of bees evolved, with advantages for both parties. So claim the authors of The Honey Factory, Jürgen Tautz, a bee researcher at the University of Würzburg in Germany, and Diedrich Steen, a beekeeper for over 20 years. They have joined forces to write a fascinating book that explores hive life, from the roles of honeycomb cells to bee communication. They show how 300 years of hive use has helped keepers hone the craft. Artificial chambers now allow us to extract bee products but leave the colony relatively intact, for example. There are misconceptions to correct, say Tautz and Steen. For example, the saying “busy as a bee” is far from the truth. The authors say honeybees are quite lazy and achieve great feats only by teamwork; some experiments show foraging bees make three or four flights per day. But if 25,000 foragers bring 50 milligrams of nectar per trip, that still makes an impressive 5 kilograms daily. Their famous waggle dance is misunderstood, too. It has long been seen as a sophisticated form of communication used to convey the exact location of food to their hivemates. But recent work by Tautz and others shows that, while the dance may tell the bees where to head, it isn’t that precise. In fact, when a food source is remote, bees rely on experienced foragers carrying the scent of the flowers they are seeking to guide them.

11-28-18 Some honeybees have four parents or no mother – and we don’t know why
We’ve still got plenty to learn about “the birds and the bees”. A close looker has revealed that some honeybees born partly male and partly female have up to four parents – and some of them have no mother at all. In bees, unfertilised eggs develop into males, or drones, who seek out queens to mate with. Fertilised eggs usually develop into female workers. However, queens mate with at least 10 males to produce new colony members, and more than one sperm enters each egg. In a few rare instances, individual bees can end up with some tissue derived from the fertilised egg, which is female, and some from extra sperm, which is male. An organism that has male and female reproductive organs is called a hermaphrodite – but organisms, like the bees, with both male and female tissue throughout the body are known as gynandromorphs. Sarah Aamidor and colleagues at the University of Sydney, Australia, studied 11 gynandromorph honeybees from a single colony to learn more about how these individuals develop. Five of them had normal worker ovaries, but three others had “queen-like” ovaries, containing larger numbers of tubes called ovarioles. One had normal male reproductive organs, and two had partial male organs. Genetic tests revealed the gynandromorphs’ unusual family histories. Nine of them had two or three fathers and one mother. One had no mother and two fathers, resulting from the fusion of two sperm.

11-19-18 Hemp fields offer a late-season pollen source for stressed bees
Low-THC cannabis attracts a wide range of bee species collecting food for larvae. Fields of hemp might become a late-season pollen bonanza for bees. Industrial hemp plants, the no-high varieties of cannabis, are becoming a more familiar sight for American bees as states create pilot programs for legal growing. Neither hemp nor the other strains of the Cannabis sativa species grown for recreational or medicinal uses offer insects any nectar, and all rely on wind to spread pollen. Still, a wide variety of bees showed up in two experimental hemp plots during a one-month trapping survey by entomology student Colton O’Brien of Colorado State University in Fort Collins. Bees in 23 out of the 66 genera known to live in Colorado tumbled into O’Brien’s traps, he reported November 11 at Entomology 18, the annual meeting of the U.S. and two Canadian entomological societies. O’Brien and his adviser, Arathi Seshadri, think this is the first survey of bees in cannabis fields. “You walk through fields and you hear buzzing everywhere,” O’Brien said. He caught big bumblebees, tiny metallic-green sweat bees and many others clambering around in the abundant greenish-yellow pollen shed by the male flowers.

7-16-18 Honeybees gang up to roast invading hornets alive — at a terrible cost
The worker bees that form “hot defensive bee balls” are effectively kamikaze fighters, with the heat from the ball shortening their life expectancy. When hornets attack, bees know what to do. A few hundred workers can swarm into balls around hornets and roast them alive with their body heat. The formation of such “hot defensive bee balls” was first described in 1995 in Japanese honeybees. Now we know the defence is something of a kamikaze mission for the bees involved. When hornets attack a hive to carry off bees to eat, a group of worker bees quickly surround the intruder. The bees vibrate their wing muscles to generate temperatures of about 46oC for more than 30 minutes, enough to kill the hornets. It’s crucial they deploy the balls quickly, otherwise the hornet releases pheromones that attracts reinforcements. Entomologist Atsushi Ugajin at Tamagawa University near Tokyo began wondering about the costs to the honeybees. He wondered if heat exposure in the balls might reduce their life expectancy. To find out, he and his colleagues marked about 350 Japanese honeybee workers with colours to record their age in days. Then they divided a batch of bees that were 15-20 days old into two groups, one of which was allowed to form hot balls and one of which was kept in the hive at 32o C. Workers typically live for several weeks. The bees that avoided the hot balls were all dead 16 days after the ball, but the ones that took part were all dead within 10 days. But what happens when another hornet inevitably attacks? Hornets often attack hives 30 times a week in the autumn. So Ugajin performed another experiment, exposing the bees to a second hornet attack. It turned out that battle-hardened bees that had joined in the first ball were more likely to help out in a second ball.

7-8-18 Why humans, and Big Macs, depend on bees
Thor Hanson talks about his new book, Buzz. When you hear the word bee, the image that pops to mind is probably a honeybee. Maybe a bumblebee. But for conservation biologist Thor Hanson, author of the new book Buzz, the world is abuzz with thousands of kinds of bees, each as beautiful and intriguing as the flowers on which they land. Speaking from his “raccoon shack” on San Juan Island in Washington — a backyard shed converted to an office and bee-watching space, and named for its previous inhabitants — Hanson shares what he’s learned about how bees helped drive human evolution, the amazing birds that lead people to honey, and what a Big Mac would look like without bees. The following conversation has been edited for length and clarity.

6-7-18 Bees join an exclusive crew of animals that get the concept of zero
Honeybees can pass a test of ranking ‘nothing’ as less than one. A little brain can be surprisingly good at nothing. Honeybees are the first invertebrates to pass a test of recognizing where zero goes in numerical order, a new study finds. Even small children struggle with recognizing “nothing” as being less than one, says cognitive behavioral scientist Scarlett Howard of the Royal Melbourne Institute of Technology in Australia. But honeybees trained to fly to images of greater or fewer dots or whazzits tended to rank a blank image as less than one, Howard and colleagues report in the June 8 Science. Despite decades of discoveries, nonhuman animals still don’t get due credit outside specialist circles for intelligence, laments Lars Chittka of Queen Mary University of London, who has explored various mental capacities of bees. For the world at large, he emphasizes that the abilities described in the new paper are “remarkable.” Researchers recognize several levels of complexity in grasping zero. Most animals, or maybe all, can understand the simplest level — just recognizing that the absence of something differs from its presence, Howard says. Grasping the notion that absence could fit into a sequence of quantities, though, seems harder. Previously, only some primates such as chimps and vervet monkeys, plus an African gray parrot named Alex, have demonstrated this level of understanding of the concept of zero (SN: 12/10/16, p. 22).

6-6-18 Bees aren’t just smart, they’re sensitive too
Far from being mindless pollen-collecting drones, bees can solve problems, make choices and have reactions that look suspiciously like human emotions. AS YOU watch a bee bumbling about on a summer’s day, you might assume nothing special is going on. We have come to accept that these humble insects are little more than mindless drones buzzing around on the autopilot program of biological instinct. We presumed that they lacked individuality and simply slaved mindlessly for the larger purposes of the hive. But, under the close scrutiny of imaginative scientists, we are now learning that bees actually have unique personalities that enable them to solve problems, make choices and react in ways that look suspiciously like human emotions. “Bees are capable of behaviour that rivals in complexity that of some simple mammals,” says Andrew Barron at Macquarie University in Sydney, Australia. All with a brain the size of a mustard seed. We have known for decades that bees working collectively are capable of great things – not least symbolic language in the form of their waggle dance, which they use to share information about the location of food sources. Then findings started trickling in that showed individual bees deserved more credit. They can follow intricate rules, distinguish between patterns in nature, sort sensory stimuli by shape and colour, and even have a rudimental ability for mathematics. But in the past few years apian skills have been shown to have truly mind-boggling complexity.

4-6-18 Wasps drum with their stomachs to tell each other about food
German yellowjacket wasps alert each other to food by drumming their abdomens against the nest wall, in a wasp equivalent of the famous honeybee “waggle dance”. Wasps literally drum up interest in food. They bang their abdomens against the walls of their nests, and it now seems this informs other wasps that food is available. It is the first time that wasps have been shown to communicate in this way. Several species of wasp are known to perform “gastral drumming”. From time to time, they rapidly pummel their abdomens against their nest walls in a series of short bursts. The scientists who first reported this behaviour in the 1960s thought it may have been a way for wasps to communicate that they were hungry. Observational studies suggested that, if a colony was starved of food, the wasps would drum more, as if in anguish. In response to drumming, other wasps started moving more, foraging more, and performing trophallaxis: regurgitating food to share with their nestmates. However, the idea that gastral drumming communicates hunger was never tested empirically. Meanwhile, other researchers suggested the wasps might be telling their nestmates about useful sources of food. This “recruitment” behaviour is common in social animals, such as house sparrows and naked mole rats.

4-6-18 Waggle-dancing robot tells bees where to look for food
A robotic bee talks to bees in their own language, but not all of them seem to pay attention. Robots are talking with bees. A robotic bee can tell real bees the best places to forage, and at least some of the time they seem to get the message. Bees communicate using a sequence of movements known as the waggle dance, where the dancer wiggles their body whilst moving in a figure of eight. The orientation and the length of the movements tell other bees the direction and distance of a food source. A robot called RoboBee can mimic this dance. RoboBee doesn’t actually look much like a bee: it’s made of a cylindrical piece of sponge with plastic wings, and it’s attached to the end of a rod that controls its movements. But RoboBee’s looks aren’t that important, as inside a hive it’s so dark that bees don’t use sight to observe each other. Instead they smell and touch their nestmates with their antennae and detect air flow and vibrations through the honeycomb. The researchers filmed how bees responded to the RoboBee’s dance inside a hive. They hoped to see them follow the robot by staying close to it, touching it and tracking its movements as they do when other bees do the waggle dance. On some days, the robot worked beautifully and on others the bees ignored it, says Tim Landgraf, who developed RoboBee with colleagues at the Free University of Berlin in Germany. They don’t yet know why the robot works sometimes but not others, he says. When bees did follow the dance, they did so for longer than the average amount of time they follow natural dances. Landgraf estimates that the robot’s communication is 10 times less effective than that of real bees. This might be because it doesn’t have legs, so it doesn’t vibrate the honeycomb like a real bee. Chemical signals could be important too.

4-2-18 How honeybees’ royal jelly might be baby glue, too
A last-minute pH shift turns goo sticky and keeps queen larvae from falling out of their cells. Honeybee royal jelly is food meant to be eaten on the ceiling. And it might also be glue that keeps a royal baby in an upside-down cradle. These bees raise their queens in cells that can stay open at the bottom for days. A big blob of royal jelly, abundantly resupplied by worker bees, surrounds the larva at the ceiling. Before the food is deposited in the cell, it receives a last-minute jolt of acidity that triggers its proteins to thicken into goo, says Anja Buttstedt, a protein biochemist at Technische Universität Dresden in Germany. Basic larva-gripping tests suggest the jelly’s protein chemistry helps keep future queens from dropping out of their cells, Buttstedt and colleagues propose March 15 in Current Biology. Suspecting the stickiness of royal jelly might serve some function, researchers tweaked its acidity. They then filled small cups with royal jelly with different pH levels and gently turned the cups upside down. At a natural royal jelly acidity of about pH 4.0, all 10 larvae dangled from their gooey blobs upside down overnight. But in jelly boosted to pH 4.8 (and thinned in the process), four of the 10 larvae dropped from the cups. At pH 5.9, all of them dropped.

3-22-18 How bees defend against some controversial insecticides
Researchers have discovered enzymes that can help resist some neonicotinoids. Honeybees and bumblebees have a way to resist toxic compounds in some widely used insecticides. These bees make enzymes that help the insects break down a type of neonicotinoid called thiacloprid, scientists report March 22 in Current Biology. Neonicotinoids have been linked to negative effects on bee health, such as difficulty reproducing in honeybees (SN: 7/26/16, p 16). But bees respond to different types of the insecticides in various ways. This finding could help scientists design versions of neonicotinoids that are less harmful to bees, the researchers say. Such work could have broad ramifications, says study coauthor Chris Bass, an applied entomologist at the University of Exeter in England. “Bees are hugely important to the pollination of crops and wild flowers and biodiversity in general.” Neonicotinoids are typically coated on seeds such as corn and sometimes sprayed on crops to protect the plants from insect pests. The chemicals are effective, but their use has been suspected to be involved in worrisome declines in numbers of wild pollinators (SN Online: 4/5/12).

1-18-18 US police arrest two boys after vandalism killed 500k bees
Police have arrested two boys for allegedly vandalising a honey business in the US state of Iowa that killed half a million bees in late December. The damage to 50 beehives at Wild Hill Honey farm in Sioux City resulted in the honey bees freezing to death. The boys aged 12 and 13 are charged with three offences. Wild Hill Honey's owners said they had caused $60,000 (£43,400) of damage and called the crime "completely senseless." Co-owner Justin Engelhardt told the Sioux City Journal: "They knocked over every single hive, killing all the bees. They wiped us out completely." Mr Engelhardt and his wife discovered the destruction on their property on 28 December when they went to dust off snow from their hives. "They broke into our shed, they took all our equipment out and threw it out in the snow, smashed what they could. Doesn't look like anything was stolen, everything was just vandalised or destroyed," said Mr Engelhardt last month. The losses faced by Mr Engelhardt and his wife drew national and international attention and police were able to track down the suspects with the help of tip-offs from the public.

1-10-18 Smell of death tells undertaker bees it’s time to remove corpses
Undertaker honeybees get rid of the bodies of dead nestmates, but only those with a good sense of smell are able to do it. BRING out your dead! Honeybees pick up dead or diseased nestmates and drag them out of the hive. Removing corpses protects against infection, which can spread like wildfire in densely packed hives. “The honeybees work together to fight off disease,” says Alison McAfee at the University of British Columbia, Canada. But not all hives remove their corpses. McAfee and her colleagues have been figuring out why this is. In a 2017 study, they discovered two pheromones, called oleic acid and beta-ocimene, which are only released by dead bee larvae. When they wafted these “death pheromones” over honeybees, nerve cells in the antennae of corpse-removing bees were more active than those of other bees. This suggested that corpse-removing bees were better able to smell the pheromones. Now the team has added the pheromones to healthy larvae. As expected, worker bees removed dosed individuals from the nest, and bees from corpse-removing colonies removed more larvae than those from other nests (bioRxiv, doi.org/ch36). The corpse-removing bees’ ability to smell death could be down to two proteins on their antennae, OBP16 and OBP18. These are largely absent from bees that don’t remove corpses. “These proteins grab onto the odour molecules, transport them to the neurons and stimulate them, leading to a sense of smell,” says McAfee.

12-11-17 Bumblebees solve the travelling salesman problem on the fly
While buzzing between flowers, bees can solve the maths dilemma called the travelling salesman problem by finding the shortest route that visits every blossom. Bumblebees aren’t just hard workers, they’re efficient, too. These insects have a grasp of maths that enables them to crack the classic travelling salesman problem as they forage for pollen and nectar. The problem, a benchmark of computer science, poses the question, “Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?” This was the conundrum facing bumblebees let loose on an array of artificial flower feeding stations at Rothamsted Research in Harpenden, UK. “We tempted the bees with shortcuts between feeding stations that increased the total distance they travelled to visit all the feeders,” said Joe Woodgate at Queen Mary University of London, who led the research. Initially, the bees fell into the trap, opting for short-term gain but ending up with a longer, more exhausting journey as they visited every flower in turn. Gradually, the insects refined their flight paths and found the most effective “travelling salesman” solution. Instead of taking the obvious short cuts, they altered the order of their flower visits to reduce the overall travel distance. The team studied six bumblebees making 201 flights using a special type of radar capable of identifying signature reflections from tiny transponders attached to the insects.

11-9-17 Honeybees fumble their way to blueberry pollination
But the berry pollen doesn’t end up in the insects’ hives. Honeybees may be the world’s most famous pollinator, but a new study shows that blueberry blooms reduce the insects to improvisational klutzes. Not useless ones though. Pollination specialists have realized that the pollen haul found in hives of Apis mellifera honeybees has little, if any, from blueberry flowers, ecologist George Hoffman said November 5 at the Entomology 2017 meeting. Yet big commercial blueberry growers bring in hives of honeybees in the belief that the insects will help wild pollinators and boost the berry harvest. It isn’t easy for honeybees to stick their heads into jar-shaped blueberry flowers, which narrow at the top, to get at the nectar. Nor do honeybees do the buzz-in-place move that some other bees use to shake pollen out of the pores on the blueberry flower anthers. Still, fumbling honeybees often get blueberry pollen on their bodies as they grab and stretch, sometimes even poking a leg down into a bloom. In more than 60 percent of bee visits analyzed, a leg brushed against the receptive female part of the flower, Hoffman, of Oregon State University in Corvallis, found. And more of the pollen sticks to their legs than to the more usual pollination pickup spots around the bees’ heads, he observed (SN: 9/30/17, p. 32).

11-4-17 This robot was inspired by bees. And it can swim.
"What's better than a robot inspired by bees? A robot inspired by bees that can swim." "What's better than a robot inspired by bees? A robot inspired by bees that can swim," said Katherine Ellen Foley at Quartz. Researchers guided by a team of scientists from Harvard University have developed a tiny, bee-size bot, weighing the same as "about two feathers," to study the ocean. The robot has "insect-inspired wings that can both flap and rotate," allowing it to dive into water, swim, take off again, and land safely. It also comes equipped with its own "little chemical lab" to help it break the water's surface tension after it has taken a plunge. The bot converts water into oxygen and hydrogen, and once enough gas is generated, "a lighter sets it on fire, the force of which shoots the robot about 12 inches into the air." Scientists hope the robots will be able to "keep tabs on fish and algae populations," monitor water pollution, and even participate in search-and-rescue missions at sea.

10-5-17 Neonicotinoid pesticides found in honey from every continent
Neonicotinoid pesticides found in honey from every continent
The discovery of neonicotinoid pesticides in honey means pollinating insects like bees regularly eat dangerous amounts of the pesticides. The evidence has been mounting for years that the world’s most widely used pesticides, neonicotinoids, harm bees and other pollinating insects. Now it seems the problem isn’t limited to Europe and North America, where the alarm was first sounded. It’s everywhere. In 2013 the EU temporarily banned neonicotinoids on crops that attract bees, such as oilseed rape. In November, the European Food Safety Authority will decide if the evidence warrants a total ban. France has already announced one. Starting in 2012, a team led by Alex Aebi of the University of Neuchâtel, Switzerland, asked travelling colleagues, friends and relatives to bring back honey when they went abroad. In three years they amassed 198 samples from every continent except Antarctica, and tested them for neonicotinoids. They found that three-quarters of the samples contained at least one of the five neonicotinoid pesticides. Of those, nearly half contained between two and five different neonicotinoids. Most worryingly, in 48 per cent of the contaminated samples, the neonicotinoids were at levels that exceeded the minimum dose known to cause “marked detrimental effects” in pollinators. “The situation is indeed bad for pollinators,” says Aebi.

10-5-17 Much of the world’s honey now contains bee-harming pesticides
Much of the world’s honey now contains bee-harming pesticides
Global survey finds neonicotinoids in three-fourths of samples. Neonicotinoid pesticides are turning up in honey on every continent with honeybees. The first global honey survey testing for these controversial nicotine-derived pesticides shows just how widely honeybees are exposed to the chemicals, which have been shown to affect the health of bees and other insects. Three out of four honey samples tested contained measurable levels of at least one of five common neonicotinoids, researchers report in the Oct. 6 Science. “On the global scale, the contamination is really striking,” says study coauthor Edward Mitchell, a soil biologist at the University of Neuchâtel in Switzerland. The pesticides are used on many kinds of crops grown in different climates, but traces of the chemicals showed up even in honey from remote islands with very little agriculture. “I used to think of neonicotinoids as being a [localized] problem next to a small set of crops,” says Amro Zayed, who studies bees at York University in Toronto and wasn’t involved in the research. These pesticides “are much more prevalent than I previously thought.”

10-5-17 Pesticides linked to bee deaths found in most honey samples
Pesticides linked to bee deaths found in most honey samples
A new study has found traces of neonicotinoid chemicals in 75% of honey samples from across the world. The scientists say that the levels of the widely used pesticide are far below the maximum permitted levels in food for humans. In one-third of the honey, the amount of the chemical found was enough to be detrimental to bees. Industry sources, though, dismissed the research, saying the study was too small to draw concrete conclusions. Neonicotinoids are considered to be the world's most widely used class of insecticides. These systemic chemicals can be added as a seed coating to many crops, reducing the need for spraying. They have generally been seen as being more beneficial for the environment than the older products that they have replaced. However, the impact of neonics on pollinators such as bees has long been a troubling subject for scientists around the world. Successive studies have shown a connection between the use of the products and a decline in both the numbers and health of bees. Earlier this year, the most comprehensive field study to date concluded that the pesticides harm honey bees and wild bees. This new study looks at the prevalence of neonicotinoids in 198 honey samples gathered on every continent (except Antarctica). The survey found at least one example of these chemicals in 75% of the honey, from all parts of the globe. Concentrations were highest in North America, Asia and Europe.

9-6-17 Pollen hitches a ride on bees in all the right spots
Pollen hitches a ride on bees in all the right spots
Hard-to-groom zones line up with where flower reproductive parts touch the insects. After bees groom pollen off their bodies, there’s still some left over. These overlooked areas correspond to places where flowers’ reproductive parts come in contact with the bees, a new study shows. Bee bodies may be built just right to help pollen hitch a ride between flowers. For the first time, scientists have identified where and how much pollen is left behind on bees’ bodies after the insects groom themselves. These residual patches of pollen align with spots on bees’ bodies that touch flowers’ pollen-collecting reproductive parts, researchers report online September 6 in PLOS ONE. Typically, when honeybees and bumblebees visit flowers for nectar, they brush much of the pollen that powders their bodies into pocketlike structures on their legs to carry home for bee larvae to eat. In fact, bees are so good at stashing pollen that less than 4 percent of a flower’s pollen grains may reach the pollen-receiving parts of a second flower of the same species. Given bees’ pollen-hoarding prowess, researchers wondered how they came to play such a significant role in plant reproduction. So biologist Petra Wester and colleagues put buff-tailed bumblebees (Bombus terrestris) and European honeybees (Apis mellifera) into jars containing pollen grains. As the bees whizzed around, they stirred up the pollen, evenly coating themselves in just a few minutes. When placed in clean jars, the insects groomed themselves. Even after a half hour of grooming, the insects still had pollen caked on some areas of their bodies, including the tops of their heads, thoraxes and abdomens.

9-1-17 Bee larvae fed beebread have no chance of becoming queen
Bee larvae fed beebread have no chance of becoming queen
Whether a honeybee larva becomes a queen or a worker is down to the food it is given – and the amount of plant RNA in it. A simple meal is all that’s needed to determine the fate of a honeybee larva. It turns out that fragments of genetic material from flowers in their food control the bees’ destinies. When female larvae are fed royal jelly, which is secreted by other bees, they develop into large-bodied, fertile queens. But most larvae eat beebread, a mixture of pollen and nectar. These larvae develop into smaller, sterile worker bees. Xi Chen at Nanjing University in China and colleagues have now found that beebread contains lots of small RNA molecules called microRNAs. These regulate the expression of genes, and in plants they help regulate essential processes like making leaves and flowers. “Plants utilise certain miRNAs to influence the size, morphology, colour and development of flowers,” says Chen. “Such characteristics of flowers guide [honeybees] in pollen collection.” As a result, a lot of these miRNAs end up in beebread, where larvae eat them. The researchers collected pollen, honey, royal jelly and beebread from hives and measured their miRNA levels. They found that beebread and pollen had much higher concentrations of plant miRNAs than royal jelly. The team then reared bee larvae in the laboratory, feeding them a beebread mimic — a lab diet enriched with the same miRNAs as in pollen, at the same amounts. Larvae grown with miRNAs ended up as worker bees, with reduced weight and size, and smaller ovaries.

8-4-17 Bees are first insects shown to understand the concept of zero
Bees are first insects shown to understand the concept of zero
Zero is not an easy idea to grasp, even for young humans – but experiments suggest bees might be up to the challenge. Bees seem to understand the idea of zero – the first invertebrate shown to do so. When the insects were encouraged to fly towards a platform carrying fewer shapes than another one, they apparently recognised “no shapes” as a smaller value than “some shapes”. Zero is not an easy concept to comprehend, even for us. Young children learn the number zero later than other numbers, and often have trouble identifying whether it is less than or more than 1. Apart from ourselves, some other animals grasp the concept of zero, though. Chimpanzees and monkeys, for instance, have been able to consider zero as a quantity when taught. With their tiny brains, bees may seem an unlikely candidate to join the zero club. But they have surprisingly well-developed number skills: a previous study found that they can count to 4. To see whether honeybees are able to understand zero, Scarlett Howard at RMIT University in Melbourne and her colleagues first trained bees to differentiate between two numbers. They set up two platforms, each with between one and four shapes on it.

11-3-16 Bees collect honeydew from bugs before spring blossoms arrive
Bees collect honeydew from bugs before spring blossoms arrive
In the absence of nectar, bees get by on the sweet secretions of other insects — but they still need flowers for their protein-laden pollen. When nectar is scarce, bees can tap into another source of sweet stuff: the droppings left behind by other insects. This honeydew, a sugar-rich substance secreted by sap-sucking scale insects, may tide hungry bees over until spring flowers bloom. Although we tend to think of bees as hive-living socialites, most bee species are solitary, with each female building a nest to protect her developing offspring. Adults emerge in the spring and live for just a few weeks, when they mate and gather pollen and nectar. Fragrant, colourful flowers are like neon arrows pointing to those resources. But how wild bees survive if they mature before the blooms do was still largely a mystery, says Joan Meiners at the University of Florida in Gainesville. Unlike colony-building honeybees, solitary bees don’t stockpile honey for times when blossoms are scarce. “There’s really not much that’s known about what bees do when there aren’t flowers,” Meiners says.

Bees
Tales from the Hive

Sioux Falls Zoologists endorse Bees: Tales from the Hive for showing
us the complex lives of these amazing little creatures.
How the bee colony works and bees work together.