Sioux Falls Zoologists

"Persistence and determination alone are omnipotent!"

The mirror test is an experiment developed in 1970 by psychologist Gordon Gallup Jr. to determine whether an animal possesses the ability to recognize itself in a mirror. It is the primary indicator of self-awareness in non-human animals and marks entrance to the mirror stage by human children in developmental psychology. Animals that pass the mirror test are: Humans older than 18 mo, Chimpanzees, Bonobos, Orangutans, Gorillas, Bottlenose Dolphins, Orcas (Killer Whales), Elephants, and European Magpies. Others showing signs of self-awareness are Pigs, some Gibbons, Rhesus Macaques, Capuchin Monkeys, some Corvids (Crows & Ravens) and Pigeons w/training. (Sorry Kitty!)

The World of Insects Movies
Endorsed by Sioux Falls Zoologists

Sioux Falls Zoologists recommends the following documentaries that describe the world of insects and their behavior.

Insects have been around for 400 million years. They also were once quite large. Dragonflies once had a wingspan of over 2 feet. Their individual intelligence isn't much to speak of, but they do exhibit swarm intelligence (see Gathering Swarms ) which has obviously been incorporated in their genetics.

Bees seem to be on the high end of insect intelligence. They communicate locations using fairly complicated "waggle" dances and seem to "vote" on where to locate new hives. It's amazing what 40 million years of evolution (or more) can incorporate in a species' genetics.

The movies are all available from Amazon.com but you are free to obtain them from many other sources. Amazon offers them on their website along with many alternate sources, often less expensive. Many are probably also available on NetFlix.com and elsewhere for on-line viewing. You are free to choose whatever source you please. The movie links on the following pages point to the movie location at Amazon.

Documentaries on Insect behavior, including Butterfly and Bee behavior, are described on the following 7 pages:

6-27-18 Bumblebees in cities are healthier than those in the countryside
Cities provide a refuge for bumblebees, which have been found to grow bigger colonies and store more food in urban areas than they do in the countryside. City bumblebees have been found to grow healthier colonies than those in the surrounding suburbs and countryside. They may be taking advantage of humans’ preference for flowering plants around businesses and homes. “There are a few species that are really able to exploit the urban environment – pigeons, rats, foxes. It seems like bees belong to that group,” says Ash Samuelson at the Royal Holloway University of London. She and her team raised colonies from wild-caught bumblebee queens, and placed them in 38 spots in areas with different degrees of urbanisation – inner-city London, surrounding suburbs, and rural farmland in southeast England. They tracked the size of the eventual colony, and the amount of pollen and nectar the bees stored. Both the village and city colonies produced a significantly higher number of offspring than the countryside bees. Samuelson says this suggests that queen bees in the cities and villages lived longer and were able to build up a larger troupe of worker bees. “Cities can be very good resources for bees. There are gardens and parks that have a lot of flowers available all year round,” she says. “In agricultural areas, you have mass crops that provide flowers only for a short-lived period.” The bees that lived among the crops stored less food – an indicator of colony strength – than their city counterparts.

5-3-18 Flying beetle cyborgs guided with tiny battery-powered backpacks
Beetles have been turned into autonomous flying robots. They could one day swarm through disaster zones on search and rescue missions. Buzzing cyborg beetles are taking to the skies. Just when you thought big insects were creepy enough, electronic filled bug backpacks have been used to turn them into controllable flying bio-robots. Male M. torquata beetles had electrodes implanted into four of their flight muscles. Small electric pulses were then administered to steer them left or right. Their acceleration could be increased by upping the frequency of the pulses. A 3D motion capture system tracked their position during flight. The researchers found that when a continuous pulse was applied, the beetles would eventually adapt to the intervention. However, applying two short pulses lasting 150 milliseconds, with a 50 millisecond rest in between, was most effective for controlling their route, reaching a success rate of 79 percent when the beetle’s position was reassessed every 200 ms. “This is the first demonstration that insect motion can be steered in a desired direction in a consistent way,” says Sawyer Fuller from the University of Washington in Seattle, who is not involved with the research. “It shows that truly autonomous, bio-hybrid robots the size of insects are a real technical possibility.” The beetle cyborgs were created by Hirotaka Sato from Nanyang Technological Institute in Singapore, Malaysia and his colleagues. They were interested in building tiny flying robots and by using beetles as the starting point, Sato and his team could avoid the incredibly difficult task of making small robotic bodies.

2-6-18 Pollinators are usually safe from a Venus flytrap
Out of the hundreds of species of carnivorous plants found across the planet, none attract quite as much fascination as the Venus flytrap. The plants are native to just a small section of North Carolina and South Carolina, but these tiny plants can now be found around the world. They’re a favorite among gardeners, who grow them in homes and greenhouses. Scientists, too, have long been intrigued by the plants and have extensively studied the famous trap. But far less is known about the flower that blooms on a stalk 15 to 35 centimeters above — including what pollinates that flower. “The rest of the plant is so incredibly cool that most folks don’t get past looking at the active trap leaves,” says Clyde Sorenson, an entomologist at North Carolina State University in Raleigh. Plus, notes Sorenson’s NCSU colleague Elsa Youngsteadt, an insect ecologist, because flytraps are native to just a small part of North and South Carolina, field studies can be difficult. And most people who raise flytraps cut off the flowers so the plant can put more energy into making traps.

11-4-17 This robot was inspired by bees. And it can swim.
"What's better than a robot inspired by bees? A robot inspired by bees that can swim." "What's better than a robot inspired by bees? A robot inspired by bees that can swim," said Katherine Ellen Foley at Quartz. Researchers guided by a team of scientists from Harvard University have developed a tiny, bee-size bot, weighing the same as "about two feathers," to study the ocean. The robot has "insect-inspired wings that can both flap and rotate," allowing it to dive into water, swim, take off again, and land safely. It also comes equipped with its own "little chemical lab" to help it break the water's surface tension after it has taken a plunge. The bot converts water into oxygen and hydrogen, and once enough gas is generated, "a lighter sets it on fire, the force of which shoots the robot about 12 inches into the air." Scientists hope the robots will be able to "keep tabs on fish and algae populations," monitor water pollution, and even participate in search-and-rescue missions at sea.

8-3-17 Pollination threatened by artificial light
Pollination threatened by artificial light
Researchers have discovered a new global threat to pollination - artificial light at night, which was found to reduce visits of nocturnal pollinators to flowers by 62%. The impact of this is a significant reduction in fruit production. Pollinator numbers are declining worldwide so this is not good news for wild plants and crop production. Nocturnal insects are easily distracted from their pollination duties by the lure of bright lights. Fruit begins with a flower, but not every flower results in a fruit. A number of factors result in the remarkable transformation of flower to fruit and one of the most important is insect pollination. But insects are in rapid decline caused largely by an anthropogenic assault including habitat loss and disruption, pesticide use, invasive alien species and climate change. But in a new study reported in Nature, another threat is revealed - artificial light at night. Dr Eva Knop, University of Bern, Switzerland, who led the research said: "Our study suggests that it is quite common for plants to have both night and day pollinators. During night it is often the scent that attracts the nocturnal pollinators but also other cues can be important, such as visual cues as the nocturnal pollinators have often very sensitive eyes." We are all familiar with bees and butterflies pollinating flowers during the day but come sundown a parade of "night-shift" pollinators take over. "In our study, the most abundant night time pollinators were moths (Lepidoptera), followed by beetles (Coleoptera) and bugs (Hemiptera)", said Dr Eva Knop. But, owing to artificial light contamination, from street lamps for example, our nights are no longer properly dark. Artificial light at night is spreading globally at an estimated rate of 6% per year.

8-2-17 Light pollution can foil plant-insect hookups, and not just at night
Light pollution can foil plant-insect hookups, and not just at night
For cabbage thistles, daytime pollinators didn’t make up for missed after-hours seed-making. Artificial light at night upsets pollinating insects and plants, and that disruption may spread into daylight hours. For flowers, too much light at night could lead to a pollination hangover by day. Far from any urban street, researchers erected street lights in remote Swiss meadows to mimic the effects of artificial light pollution. In fields lit during the night, flowers had 62 percent fewer nocturnal visitors than flowers in dark meadows, researchers report August 2 in Nature. For one of the most common flowers, daytime pollination didn’t make up for nightly losses, says ecologist Eva Knop of the University of Bern in Switzerland. In a detailed accounting of the pollination life of cabbage thistles (Cirsium oleraceum), Knop and colleagues found that night-lit plants produced 13 percent fewer seeds overall than counterparts in naturally dark places.

The World of Insects Movies
Endorsed by Sioux Falls Zoologists